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Abstract — The opening up of the unlicensed bands for com-
mercial use has been a tremendous success. Wireless commu-
nications in computing, mobile, medical and consumer elec-
tronics market segments have grown rapidly in the past few 
years. Due to this success, radio resources in the unlicensed 
bands are progressively becoming scarce. Recently, the Spec-
trum Policy Task Force (SPTF) within the FCC has recom-
mended that the FCC regulate spectrum allocation based on 
market principles. Such regulation implies radio networks 
wherein radios sense their environment and make opportunis-
tic use of available radio resources while not interfering with 
the operation of existing licensed networks. In this paper, we 
focus on a key component of such Spectrum Agile Radio 
(SARA) systems, namely, the detection of spectrum opportuni-
ties. We present results of simulation studies of the use of 
Hough Transform and autocorrelation function for the detec-
tion of spectrum opportunities.  
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I.  INTRODUCTION 
The increasing popularity of  radio communication networks 
over the last years, and of  wearable, hand-held computing and 
communicating devices, as well as consumer electronics, indi-
cates that there will be an ever increasing demand for radio 
communication networks providing high capacity communica-
tion. Considering this increase in demand, it is clear that the 
necessary radio spectrum will not be available in the future, 
due to the limited nature of  radio resources. Today, consumer 
electronics radio communication systems operate mainly in 
unlicensed bands. Radio resources in the unlicensed bands are 
therefore often efficiently used [1]. However, most of  the ra-
dio spectrum is allocated by traditional licensed radio services, 
and often not used at all. With the current FCC approach to 
regulation,  radio spectrum resources are often not efficiently 
used. 
This problem is approached by Spectrum Agile Radio (SARA) 
systems. SARA makes use of  the licensed radio spectrum in 
an opportunistic way, controlled by SARA policies. A SARA 
device seeks opportunities, i.e. unused radio resources prior to 
communicating, and then communicates using the identified 
opportunities without interfering with the operation of  li-
censed radio networks. Therefore, a key mechanism of  SARA 

is to identify opportunities to communicate, and to identify 
other, competing radio systems. SARA systems will work with 
evolving FCC regulations for radio spectrum allocation that 
are based on Spectrum Policy Task Force (SPTF) recommen-
dations [2]. 
Approaches to SARA are discussed in the context of  Next 
Generation (XG) framework [3]. 
To facilitate the rollout of  SARA, it should be built on top of  
existing radio communication standards such as IEEE 802.11 
with its recent extensions for radio resource management [4]. 
Therefore, we discuss the emerging supplement standard to 
the popular IEEE 802.11 wireless Local Area Network (LAN) 
for radio resource measurements, namely IEEE 802.11k [5]. 
We discuss measurements based on the carrier sensing, i.e., 
Clear Channel Assessment (CCA), and approaches for spec-
trum opportunity identification from the obtained measure-
ment results.   

II. RADIO RESOURCE MEASUREMENT IN 
IEEE 802.11K 

IEEE 802.11 Task Group k (TGk) was formed in January 
2003 to develop extension to IEEE 802.11 wireless LAN 
specification for radio resource measurement. This extension 
will specify the types of  radio resource information to meas-
ure and the request/report mechanism through which the 
measurement demands and results are communicated among 
stations.  
The goal of  TGk is to provide tools by which a radio station 
can measure and assess the radio environment and take corre-
sponding actions. To fulfill this goal, the current TGk draft 
defines seven types of  measurements [5]: 
• In Beacon report, a measuring station reports the beacons 

or probe response it receives during the measurement pe-
riod. 

• In Frame report, a measuring station reports information 
about all the frames it receives from other stations during 
the measurement period. 

• In Channel Load report, a measuring station reports the 
fractional duration over which CCA indicates the channel is 
busy during the measurement period. 
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• In Noise Histogram report, a measuring station reports 
non-802.11 energy by sampling the channel only when 
CCA indicates that no 802.11 signal is present. 

• In Hidden Node report, a measuring station reports the 
identity and frame statistics of  hidden nodes detected dur-
ing the measurement period.  

• In Medium Sensing Time Histogram report, a measuring 
station reports the histogram of  medium busy and idle time 
observed during the measurement period. 

• In Station Statistic report, a measuring station reports its 
statistics related to link quality and network performance 
during the measurement period.  

The measurements in TGk enable an IEEE 802.11 radio net-
work to collect information of  neighboring access points (via 
Beacon report) and information on link quality to neighbor 
stations (via Frame report, Hidden Node report and Station 
Statistic report). The tool set also provides ways to find out 
interference level (via Noise Histogram report) and medium 
load statistics (via Channel Load report and Medium Sensing 
Time Histogram report). 
Those are useful information for a station to collect when 
assessing its radio environment. However, none of  the meas-
urement enables the station to identify future opportunities to 
use the medium. Ways to identify spectrum opportunities, and 
other interfering radio systems, are therefore discussed in the 
following. 

III. SPECTRUM OPPORTUNITY IDENTIFICATION 
As indicated in earlier sections, when radio networks encounter 
other devices that emit energy (and therefore use shared radio 
resources) in their vicinity, it is desirable to characterize the 
radio resource usage patterns of  these other devices. Such a 
characterization of  the usage patterns results in the identifica-
tion of  opportunities for the radio networks. 
Other devices referred to previously includes radars, which are 
primary emitters, or other radio networks, which are secondary 
emitters. 

III-1 Autocorrelation 

A classical approach to determine periodic occurrences of  
spectrum opportunities, or radar pulses is based on the auto-
correlation function. The sequence of  CCA events obtained 
through listening to the channel, is processed with the auto-
correlation function. Periods in the channel conditions are 
indicated by local maxima in the resulting function. 

III-2 Hough Transform 

In this section we will examine the use of  Hough Transform 
for the detection of  radar pulses as an example for any type of  
radio signals that create periodic patterns. We will use a version 
of  the Hough Transform, known as Randomized Hough 
Transform (RHT) to detect the parameters of  helixes wrapped 
around cylinders, as explained later in the section. The Hough 
Transform [6] has been studied in image processing literature 

for detection of  patterns such as lines, circles and ellipses in 
binary images. The effectiveness of  Hough Transform in de-
tecting patterns in data with many overlaying patterns and 
random noise is proven in [6]. In the presence of  outliers, the 
Hough Transform is more robust than least squares estima-
tion. 
In brief, the Hough Transform is used to transform data from 
image space to an accumulator (or histogram) in parameter 
space, as shown in Fig. 1. 
The image space is represented by (x, y), whereas, the parame-
ter space is represented by (slope, intercept), that is (m, c). For 
each point in the image space (e.g. p and q), a line is generated 
in the parameter space as shown. The parameter space can be 
seen as a two dimensional histogram. A peak, r, in the parame-
ter space corresponds to a line in the image space. The Hough 
Transform is robust because in the image space, a collection 
of  collinear points is enough to result in a peak in the parame-
ter space. However, it has the drawback that the parameter 
space could require large amount of  memory in the computer. 
To address this drawback the RHT was developed [7]. The 
RHT as applied to straight-line detection, results in randomly 
picking pairs of  points and computing and accumulating a 
parameter (for instance, slope). When enough confidence in 
the peak is achieved, the process stops, thus reducing both 
memory and processing time. 
The use of  Hough Transform for radar pulse detection was 
first studied in [8]. The original radar pulse train is a 1-D sig-
nal. 
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Fig. 2: A helix given by the Eq. (1), for 1ϖ = . 
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Fig. 1: Hough Transform used to detect straight lines 

(a) image space and (b) parameter space. 
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Fig. 3: Discrete sequence vector used for evaluation. 

The authors have used 1-D to 2-D transformation (like a 
raster scan) and then applied the Hough Transform to detect 
straight lines, which correspond to pulse trains. Furthermore, 
they have computed the noise floor. We extend their work by 
first transforming the 1-D signal to a 3-D helical signal, and 
apply RHT to it. A helix may be represented by the following 
parametric equations: 

 
X t t
Y t t
Z t t

( ) sin( )
( ) cos( )
( )

ω
ω

=
=
=

 (1) 

This helix is cylindrical (as opposed to the more general ellipti-
cal) and has unit radius. Based on the parameter ϖ  a new 
helix can be generated that wraps around the cylinder more 
slowly as ϖ  decreases. In Fig. 1, the points (marked with *) 
on the helix themselves form a helix, with an ϖ  value less 
than one. Given two points on the helix P0 (x0, y0, z0) and P1 

(x1, y1, z1), the parameter ϖ  can be given by the following 
equation: 
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Fig. 4: Autocorrelations (right hand side) of the three 

sequences. 

If  the two points P0 and P1 are inside one whorl of  the helix, 
then ϖ  works out to be 1. The length of  the line segment 
given by one twirl of  helix is given in Eq. (3). 

 
21l 2 1π

ϖ
⎛ ⎞= ⋅ + ⎜ ⎟
⎝ ⎠

 (3) 

IV. EVALUATION AND BASIC CONCEPTS 
We discuss the RHT and the autocorrelation approach sepa-
rately in the following. 

IV-1 Randomized Hough Transform 

Let us represent the location (time-of-arrival) of  the radar 
pulse train with the discrete sequence vector Lp. The sequence 
Lp1 = [9, 59, 109, 159, 209, 259, 309, 359] is shown in Fig. 3, 
top sequence. The corresponding right-hand side of  the auto-
correlation function is indicated in Fig. 4, top sequence. For 
this sequence, the ϖ  histogram as indicated in Fig. 5 is ob-
tained by the Hough Transform. For this case, 0.116ϖ = . 
Now let us consider the case where there are two pulse trains 
that are multiplexed and represented by Lp2 = [9, 20, 59, 60, 
100, 109, 140, 159, 180, 209, 220, 259, 260, 300, 309, 340, 
359], as illustrated in Fig. 3, bottom sequence. 

 
Fig. 5: Histogram of ϖ for Lp1 

 
Fig. 6: Histogram of ϖ  for Lp2 
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The corresponding right-hand side of  the autocorrelation 
function is indicated in Fig. 4, bottom sequence. The ϖ  his-
togram as indicated in Fig. 6 is obtained by the Hough Trans-
form of  this multiplexed sequence. Note that 1ϖ =  corre-
sponds to points on the helix within one whorl.  
The advantage of  the autocorrelation function, namely, its 
notional simplicity has to be balanced with its disadvantage, 
namely computational complexity. Similarly, for the Hough 
Transform, its advantage of  computational simplicity and ro-
bustness has to be balanced with its disadvantage namely pos-
sible dependence on the choice of  parameters. 
 

IV-2 Autocorrelation Function 

Fig. 7 illustrates a typical spectrum usage pattern of  
IEEE 802.11a, when five stations communicate. The dark 
solid fields illustrate frame transmissions, the triangles illustrate 
timers that are set by the individual stations. Station 1 carries a 
traffic that offers a constant bit rate, and hence produces a 
deterministic spectrum usage pattern, because the intervals 
between consecutive frame exchange attempts that are initi-
ated by station 1 do not change over time. However, the me-
dium is busy when other stations transmit, and during busy 
times, station 1 does not access the medium, because of  the 
nature of  the listen-before talk based medium access control 
protocol in IEEE 802.11. Apparently, the autocorrelation 
function is suitable to determine the deterministic medium 
accesses, and to assess what the period of  the medium access 
is. This is illustrated in Fig. 8 and Fig. 9. In these figures, a 
spectrum usage pattern similar to the one in Fig. 7 is illustrated 
(bottom graph in the two figures, the deterministic medium 
access occurs every 20 ms and is embedded in other random 
frame exchanges ), and the corresponding autocorrelation 
functions (top graph in the two figures). It can be seen how 
the deterministic medium access is identified. The difference 
between the figures lies in the length of  the measurement du-
ration:  whereas for the identification of  spectrum opportuni-
ties, in Fig. 8 the measurement duration was 1000 ms, the 
measurement duration for Fig. 9 was only 100 ms. Spectrum 
opportunities, i.e., significant local maxima in the autocorrela-
tion function, are indicated. For better comparison, in both 
figures the first 100 ms of  the measured CCA patterns are 
shown. When comparing the two figures, it can be seen that 
with the longer measurement durations, spectrum opportuni-
ties are more reliably identified, at the cost of  higher computa-
tion effort, and longer measurement durations. 
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Fig. 7: Spectrum usage pattern for wireless Local Area Network (LAN) IEEE 802.11a (5GHz unlicensed band). 

Five wireless LAN 802.11a stations
communicate with each other.
Station 1 (bottom row in the
figure) transmits regularly, with
deterministic medium access,
hence creating the “opportunity”
for SARA devices to predict its
spectrum usage! 
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Fig. 8: The first 100ms of the spectrum usage pattern 
(bottom) and corresponding ACF, for a measurement 
duration of 1000ms. The “Spectrum Opportunities” 

indicate the detection of deterministic spectrum usages.
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V. CONCLUSION 
We have outlined and compared two approaches for spectrum 
opportunity identification, and radio system identification, 
based on the CCA mechanism of  IEEE 802.11. We use the 
autocorrelation of  the sequence of  CCA events as well as the 
random Hough transform of  the data. We have shown that 
introducing this type of  measurement into IEEE 802.11 (for 
example as part of  802.11k), provides a first step towards 
Spectrum Agile Radio. In the future, the two methods de-
scribed to identify periodic accesses to the radio spectrum may 
be associated with each other in order to increase the precision 
and accuracy. We expect that both alternatives show advan-
tages and disadvantages in different scenarios, and a combina-
tion of  both may therefore result in the most precise identifi-
cation of  other radio systems. 
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corresponding ACF. Measurement duration: 100ms. 
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